183 research outputs found

    Origin of resolution enhancement by co-doping of scintillators: Insight from electronic structure calculations

    Get PDF
    It was recently shown that the energy resolution of Ce-doped LaBr3_3 scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that (i) Br vacancies are the primary electron traps during the initial stage of thermalization of hot carriers, prior to hole capture by Ce dopants; (ii) isolated Br vacancies are associated with deep levels; (iii) Sr doping increases the Br vacancy concentration by several orders of magnitude; (iv) SrLa\text{Sr}_\text{La} binds to VBrV_\text{Br} resulting in a stable neutral complex; and (v) association with Sr causes the deep vacancy level to move toward the conduction band edge. The latter is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from SrLa−VLa\text{Sr}_\text{La}-V_\text{La} complexes then can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon

    From Uncertainty Data to Robust Policies for Temporal Logic Planning

    Full text link
    We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving

    First-principles calculation of intrinsic defect formation volumes in silicon

    Full text link
    We present an extensive first-principles study of the pressure dependence of the formation enthalpies of all the know vacancy and self-interstitial configurations in silicon, in each charge state from -2 through +2. The neutral vacancy is found to have a formation volume that varies markedly with pressure, leading to a remarkably large negative value (-0.68 atomic volumes) for the zero-pressure formation volume of a Frenkel pair (V + I). The interaction of volume and charge was examined, leading to pressure--Fermi level stability diagrams of the defects. Finally, we quantify the anisotropic nature of the lattice relaxation around the neutral defects.Comment: 9 pages, 9 figure

    Electronic structure of LaBr3 from quasi-particle self-consistent GW calculations

    Full text link
    Rare-earth based scintillators in general and lanthanum bromide (LaBr_3) in particular represent a challenging class of materials due to pronounced spin-orbit coupling and subtle interactions between d and f states that cannot be reproduced by standard density functional theory (DFT). Here a detailed investigation of the electronic band structure of LaBr_3 using the quasi-particle self-consistent GW (QPscGW) method is presented. This parameter-free approach is shown to yield an excellent description of the electronic structure of LaBr_3. Specifically it is able to reproduce the band gap, the correct level ordering and spacing of the 4f and 5d states, as well as the spin-orbit splitting of La-derived states. The QPscGW results are subsequently used to benchmark several computationally less demanding techniques including DFT+U, hybrid exchange-correlation functionals, and the G_0W_0 method. Spin-orbit coupling is included self-consistently at each QPscGW iteration and maximally localized Wannier functions are used to interpolate quasi-particle energies. The QPscGW results provide an excellent starting point for investigating the electronic structure of excited states, charge self-trapping, and activator ions in LaBr_3 and related materials.Comment: 8 pages, 7 figure

    Nonconstant electronic density of states tunneling inversion for A15 superconductors: Nb3Sn

    Full text link
    We re-examine the tunneling data on A15 superconductors by performing a generalized McMillan-Rowell tunneling inversion that incorporates a nonconstant electronic density of states obtained from band-structure calculations. For Nb3Sn, we find that the fit to the experimental data can be slightly improved by taking into account the sharp structure in the density of states, but it is likely that such an analysis alone is not enough to completely explain the superconducting tunneling characteristics of this material. Nevertheless, the extracted Eliashberg function displays a number of features expected to be present for the highest quality Nb3Sn samples.Comment: 11 pages, 11 figure

    High Performance Multicell Series Inverter-Fed Induction Motor Drive

    Get PDF
    This document is the Accepted Manuscript version of the following article: M. Khodja, D. Rahiel, M. B. Benabdallah, H. Merabet Boulouiha, A. Allali, A. Chaker, and M. Denai, ‘High-performance multicell series inverter-fed induction motor drive’, Electrical Engineering, Vol. 99 (3): 1121-1137, September 2017. The final publication is available at Springer via DOI: https://doi.org/10.1007/s00202-016-0472-4.The multilevel voltage-source inverter (VSI) topology of the series multicell converter developed in recent years has led to improved converter performance in terms of power density and efficiency. This converter reduces the voltage constraints between all cells, which results in a lower transmission losses, high switching frequencies and the improvement of the output voltage waveforms. This paper proposes an improved topology of the series multicell inverter which minimizes harmonics, reduces torque ripples and losses in a variable-speed induction motor drive. The flying capacitor multilevel inverter topology based on the classical and modified phase shift pulse width modulation (PSPWM, MPSPWM) techniques are applied in this paper to minimize harmonic distortion at the inverter output. Simulation results are presented for a 2-kW induction motor drive and the results obtained demonstrate reduced harmonics, improved transient responses and reference tracking performance of the voltage in the induction motor and consequently reduced torque ripplesPeer reviewe

    RPGR-associated retinal degeneration in human X-linked RP and a murine model

    Get PDF
    PURPOSE. We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. METHODS. XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. RESULTS. Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. CONCLUSIONS. RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy

    Structure and Stability of an Amorphous Metal

    Full text link
    Using molecular dynamics simulations, with a realistic many-body embedded-atom potential, and a novel method to characterize local order, we study the structure of pure nickel during the rapid quench of the liquid and in the resulting glass. In contrast with previous simulations with pair potentials, we find more crystalline order and fewer icosahedra for slower quenching rates, resulting in a glass less stable against crystallization. It is shown that there is not a specific amorphous structure, only the arrest of the transition from liquid to crystal, resulting in small crystalline clusters immersed in an amorphous matrix with the same structure of the liquid.Comment: 4 pages, 4 ps figs., to appear in Phys. Rev. Let
    • …
    corecore